skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MacDougal, Elizabeth_H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sand made from recycled glass cullet could supplement limited dredged river sand (dredge) in coastal wetland restorations; however, its suitability for wetland plants is unknown. In two experiments, we compared the biomass of several wetland plants in recycled glass sand to growth in dredge. First, we grewSalix nigra,Zizaniopsis miliacea, andSporobolus alterniflorusin fine‐ and coarse‐glass sands, dredge, and a coarse‐glass/dredge mixture. Second, we grewTaxodium distichumandSchoenoplectus californicusin a revised coarse‐glass blend, dredge, and a mix. We characterized the substrate porosity, particle density, and bulk density for both experiments and tested how substrate nutrients, metals, and pH impactedS. californicusleaf contents. We found species‐specific responses to substrates: herbaceous species grew better in the mix and dredge than in glass alone, whereas trees grew equally well in the coarse glass, mix, and dredge. Glass sand was less dense than dredge. When saturated and compressed, finer‐grained glass sand and mixes had lower estimated porosities than coarser glass sand and dredge.S. californicusleaf chemistry resembled that of the plant's substrate. This study demonstrated that wetland plants can grow in glass sand, that mixtures of glass and dredge have species‐specific effects, and that substrate structure and chemistry could help explain these differences. Thus, it opens the door for broader field studies on how glass sand can best be used in coastal restoration efforts. 
    more » « less